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ABOUT
US

With more than 13 years of experience and more than 400
successful projects implemented worldwide, GEM is the mining
industry’s leading consultant. 

OUR MISSION

We are a supplier of industrial engineering products and services of
excellence for the mining industry. We seek to maximize the value of
our customers' business by improving their ability to make strategic
decisions, through innovative services effectively delivered by a highly
qualified professional team.

We have six areas of expertise:

Analytics Training Economics

Strategy Evaluation Optimization
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Introduction

From the field of computer science, our
present-day has been called by two
names. Both with profound implications:

The first is "the rebirth of artificial
intelligence". This expresses that we are
facing a process of proliferation and
maturation of artificial intelligence,
particularly in the area known as
Machine Learning (ML).

We know that the Renaissance (rebirth in
French) is also the name given to the
cultural movement developed in Europe
during the 15th and 16th centuries.
Many of the ideas that dominated this
period were not new, but rather an
assertion of the heritage and work of
Greek and Roman cultures.

Similarly, it was in the 1940s that the
pioneers of artificial intelligence
conceived an impossible but well-defined
mission: to recreate human intelligence
in a machine.

Although important advances were made
in this field during the twentieth century,
it was only in the mid-2000s that the
great technological breakthrough that
validated the discipline materialized.
However, this time the mission would be
approached with another focus: using
large amounts of data from a specific
subject, to execute a decision that
optimizes a desired result,     and.  in  this 
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way, indirectly reconstruct processes of
knowledge generation with the least
human interference.

What changed in the course of those
years? Basically two things: 1) the
computing power of computers and 2)
the amount of data available to process.

Naturally these two elements are not
and were not new. The difference is that
in order for algorithms to actually
identify patterns and learn, they needed
monumental amounts of data and huge
amounts of resources for computing.

It is only at this time that both
restrictions have been met. 

The second name attributed to this
period is "the Fourth Industrial
Revolution".

The first industrial revolution began with
the use of steam engines. The second
industrial revolution refers to the use of
electricity. The third industrial revolution
involves the use and diversification of
computers and the Internet. The fourth
industrial revolution is precisely the
implementation of Machine Learning
and the manipulation of large volumes of
data, among others.

Each of these revolutions has generated
enormous advances,      knowledge    and 

https://www.reverso.net/traducci%C3%B3n-texto#sl=spa&tl=eng&text=%C2%BFQu%C3%A9%20es%20lo%20que%20cambi%C3%B3%20en%20el%20transcurso%20de%20esos%20a%C3%B1os?.%20Fundamentalmente%20dos%20cosas:%201)%20el%20poder%20de%20c%C3%B3mputo%20de%20los%20computadores%20y%202)%20la%20cantidad%20de%20datos%20disponibles%20para%20procesar..%20Naturalmente%20estos%20dos%20elementos%20no%20son%20ni%20eran%20nuevos.%20La%20diferencia%20es%20que%20para%20que%20los%20algoritmos%20pudieran%20realmente%20identificar%20patrones%20y%20aprender,%20se%20necesitaban%20monumentales%20cantidades%20de%20datos%20y%20enormes%20cantidades%20de%20recursos%20para%20el%20c%C3%B3mputo.
https://www.reverso.net/traducci%C3%B3n-texto#sl=spa&tl=eng&text=%C2%BFQu%C3%A9%20es%20lo%20que%20cambi%C3%B3%20en%20el%20transcurso%20de%20esos%20a%C3%B1os?.%20Fundamentalmente%20dos%20cosas:%201)%20el%20poder%20de%20c%C3%B3mputo%20de%20los%20computadores%20y%202)%20la%20cantidad%20de%20datos%20disponibles%20para%20procesar..%20Naturalmente%20estos%20dos%20elementos%20no%20son%20ni%20eran%20nuevos.%20La%20diferencia%20es%20que%20para%20que%20los%20algoritmos%20pudieran%20realmente%20identificar%20patrones%20y%20aprender,%20se%20necesitaban%20monumentales%20cantidades%20de%20datos%20y%20enormes%20cantidades%20de%20recursos%20para%20el%20c%C3%B3mputo.
https://www.reverso.net/traducci%C3%B3n-texto#sl=spa&tl=eng&text=Sabemos%20que%20en%20la%20primera%20revoluci%C3%B3n%20industrial%20se%20inicia%20el%20uso%20de%20m%C3%A1quinas%20de%20vapor%20para%20reemplazar%20la%20fuerza%20humana.%20Seguramente%20muchos%20desconocen%20que%20hubo%20otras%20revoluciones%20que%20siguieron%20a%20la%20primera:%20la%20segunda%20revoluci%C3%B3n%20industrial%20se%20refiere%20al%20uso%20de%20la%20electricidad.%20La%20tercera%20se%20refiere%20al%20uso%20y%20diversificaci%C3%B3n%20de%20los%20computadores%20e%20internet.%20La%20cuarta%20apunta%20justamente%20a%20la%20implementaci%C3%B3n%20de%20Machine%20Learning%20y%20la%20manipulaci%C3%B3n%20de%20grandes%20vol%C3%BAmenes%20de%20datos,%20entre%20otros.
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technologies on specific domains, which
are expected to continue contributing to
knowledge and innovation.

Also, due to the use of these new
technologies, there has been pressure
and a trend towards the digitization of
processes in industries and companies.
This has generated huge volumes of
data, which add relevant value when
patterns are identified.

Therefore, the aim of this Perspective is
to understand the value that exists in
the extraction of patterns from data,
using Machine Learning techniques,
specifically in the field applied to mining.
To this end, we will explain the principles
of machine learning techniques, the
state-of-the-art machine learning
applications in the mining industry, and
finally a case study of GEM in the
application of machine learning to mine
prospecting.
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This is not an unknown term. Machine
Learning is frequently mentioned in the
media. Despite this, it is worth
explaining briefly its scope, principles
and practical operation.

Today, machine learning and deep
learning techniques are used in a wide
spectrum of real-world situations.
Among these we can find applications
as diverse as the detection of human
speech, translation of documents,
image recognition, prediction of
consumer behavior, fraud identification,
the decision to grant credit, deliver
personal recommendations for content
and even drive a car.

 

Figure 1. Map of Machine Learning & Deep Learning Algorithms
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Although these applications seem distant
and disconnected from each other, they
are all based on the algorithms'
identification of patterns among large
volumes of pre-categorized data.

To do this, depending on the root of the
problem, we use techniques to focus on
the specific prediction of characteristics
(regression problems), or classification,
applying supervised learning algorithms,
unsupervised, reinforcement, neural
networks or other.

https://www.reverso.net/traducci%C3%B3n-texto#sl=spa&tl=eng&text=En%20la%20actualidad,%20las%20t%C3%A9cnicas%20de%20Machine%20Learning%20y%20Deep%20Learning%20se%20utilizan%20en%20un%20amplio%20espectro%20de%20situaciones%20del%20mundo%20real.%20Entre%20%C3%A9stos%20podemos%20encontrar%20aplicaciones%20tan%20diversas%20como%20la%20detecci%C3%B3n%20del%20habla%20humana,%20traducci%C3%B3n%20de%20documentos,%20reconocimiento%20de%20im%C3%A1genes,%20predicci%C3%B3n%20del%20comportamiento%20de%20consumidores,.%20identificaci%C3%B3n%20de%20fraudes,%20toma%20de%20decisiones%20de%20pr%C3%A9stamo,%20entrega%20de
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Regardless of the algorithm, the process
is based on the definition of the
explanatory variables and/or the target
variables.

Explanatory variables are all those that
will be used to find patterns and explain
the objective variable, considering the
existence of causality. For example,
historical data on humidity, temperature,
pressure and rainfall could be used to
find relationships that allow for a
possible rain forecast classification. This
is a simple example, but it allows us to
understand two important points:

First, machine learning models need to
be trained with explanatory variables and
target variables. In the above example,
we need to point out to the machine
what the conditions were when there
was rain and what the conditions were
when there was no rain, so that the
machine can understand and look for
patterns. Therefore, if data from one
variable or the other is missing, we will
not be able to use this tool.

Second, a priori it is not possible to know
if the data will explain the target variable
in a good or a bad way. Hence the
importance of having a wide variety of
data and variables -and at the same time-
understanding the causal relationship
that is expressed between them.
Perhaps the temperature, returning to
the example of rain, might not be a good
indicator, but if you have data on wind
speeds for example, you may improve
the classification.

Another important element of the
process are the stages of training and
validation of results.     In   order   not   to 

generate sub-adjustment or
overadjustment bias in the estimate, the
total data set is split in two: with the first
set we train the algorithms and with the
second, we validate the results.

During training, the algorithm adjusts
several internal parameters
(hyperparameters) in order to predict the
target variable from the explanatory
variables present in the data.

As the training progresses, the algorithm
discovers patterns between the target
variable and the explanatory variables,
reducing the difference or error between
the actual target variable and the
predicted target variable, which is
defined as a function of the explanatory
variables.

When the error defined from statistical
indicators such as MSE (Mean Squared
Error) or the accuracy percentage is
minimal, then the model training is
finished.

The second set of validation data is then
used to evaluate the accuracy of the
prediction made in the training data set
for the target variable, from the other
explanatory variables.

 



Figura 2. Esquema de predicción para set de entrenamiento y validación.
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In this way, we can extract significant
patterns or associations from the data,
which we can generalize to produce
relatively accurate predictions, depending
on the results.

The advantage of these models is that
they present a lot of flexibility with the
data. For example, we can use images,
sounds, texts and numbers as
explanatory variables. On these, artificial
intelligence algorithms will look for and
find causal patterns existing in the data.

Machine Learning implementation can be
very attractive for companies and
industries, as a response to the high
expectations in the increase of
productivity and efficiency for the
processes they perform.

This is especially important in the mining
industry, where the ore grade is lower
over time, the exploration cost required
to develop new projects is higher,        the 

pressure for lower environmental impact
increases, and the demand for
commodities is constantly growing.
Despite this, the mining industry has
historically been quite conservative and
reluctant to change due, among other
factors, to the high impact and cost faced
by projects that do not meet
expectations.

However, the late assimilation of new
technology has profound implications.
Diego Comin, professor of economics at
Dartmouth College, has investigated the
technological assimilation between
countries and how the assimilation or
lack thereof produces disparity (Comin,
2018). This also applies to those who
delay the implementation of new
technology and tools. Over time, these
industries and companies lag behind,
gaps increase and it is harder to stay
competitive compared to those who did
early implementation (Figure 3).

Figure 2. Prediction scheme for training and validation set
 
 

                                                                    (Data)                              (Patterns found by ML)
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Y YTest Pred
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https://www.reverso.net/traducci%C3%B3n-texto#sl=spa&tl=eng&text=menores%20con%20el%20tiempo,%20el%20costo%20de%20exploraci%C3%B3n%20requerido%20para%20desarrollar%20nuevos%20proyectos%20es%20mayor,%20la%20presi%C3%B3n%20por%20una%20miner%C3%ADa%20con%20menores%20impactos%20ambientales%20aumenta,%20y%20la%20demanda%20de%20commodities%20presenta%20un%20constante%20crecimiento.%20Pese%20a%20esto,%20la%20industria%20minera%20hist%C3%B3ricamente%20se%20ha%20mostrado%20bastante%20conservadora%20y%20reacia%20al%20cambio%20debido,%20entre%20otros%20factores,%20al%20alto%20impacto%20y%20costo%20al%20que%20se%20enfrentan%20los%20proyectos%20que%20no%20satisfacen%20las%20expectativas%20planteadas.
https://www.reverso.net/traducci%C3%B3n-texto#sl=spa&tl=eng&text=menores%20con%20el%20tiempo,%20el%20costo%20de%20exploraci%C3%B3n%20requerido%20para%20desarrollar%20nuevos%20proyectos%20es%20mayor,%20la%20presi%C3%B3n%20por%20una%20miner%C3%ADa%20con%20menores%20impactos%20ambientales%20aumenta,%20y%20la%20demanda%20de%20commodities%20presenta%20un%20constante%20crecimiento.%20Pese%20a%20esto,%20la%20industria%20minera%20hist%C3%B3ricamente%20se%20ha%20mostrado%20bastante%20conservadora%20y%20reacia%20al%20cambio%20debido,%20entre%20otros%20factores,%20al%20alto%20impacto%20y%20costo%20al%20que%20se%20enfrentan%20los%20proyectos%20que%20no%20satisfacen%20las%20expectativas%20planteadas.
https://www.reverso.net/traducci%C3%B3n-texto#sl=spa&tl=eng&text=menores%20con%20el%20tiempo,%20el%20costo%20de%20exploraci%C3%B3n%20requerido%20para%20desarrollar%20nuevos%20proyectos%20es%20mayor,%20la%20presi%C3%B3n%20por%20una%20miner%C3%ADa%20con%20menores%20impactos%20ambientales%20aumenta,%20y%20la%20demanda%20de%20commodities%20presenta%20un%20constante%20crecimiento.%20Pese%20a%20esto,%20la%20industria%20minera%20hist%C3%B3ricamente%20se%20ha%20mostrado%20bastante%20conservadora%20y%20reacia%20al%20cambio%20debido,%20entre%20otros%20factores,%20al%20alto%20impacto%20y%20costo%20al%20que%20se%20enfrentan%20los%20proyectos%20que%20no%20satisfacen%20las%20expectativas%20planteadas.
https://www.reverso.net/traducci%C3%B3n-texto#sl=spa&tl=eng&text=menores%20con%20el%20tiempo,%20el%20costo%20de%20exploraci%C3%B3n%20requerido%20para%20desarrollar%20nuevos%20proyectos%20es%20mayor,%20la%20presi%C3%B3n%20por%20una%20miner%C3%ADa%20con%20menores%20impactos%20ambientales%20aumenta,%20y%20la%20demanda%20de%20commodities%20presenta%20un%20constante%20crecimiento.%20Pese%20a%20esto,%20la%20industria%20minera%20hist%C3%B3ricamente%20se%20ha%20mostrado%20bastante%20conservadora%20y%20reacia%20al%20cambio%20debido,%20entre%20otros%20factores,%20al%20alto%20impacto%20y%20costo%20al%20que%20se%20enfrentan%20los%20proyectos%20que%20no%20satisfacen%20las%20expectativas%20planteadas.
https://www.reverso.net/traducci%C3%B3n-texto#sl=spa&tl=eng&text=menores%20con%20el%20tiempo,%20el%20costo%20de%20exploraci%C3%B3n%20requerido%20para%20desarrollar%20nuevos%20proyectos%20es%20mayor,%20la%20presi%C3%B3n%20por%20una%20miner%C3%ADa%20con%20menores%20impactos%20ambientales%20aumenta,%20y%20la%20demanda%20de%20commodities%20presenta%20un%20constante%20crecimiento.%20Pese%20a%20esto,%20la%20industria%20minera%20hist%C3%B3ricamente%20se%20ha%20mostrado%20bastante%20conservadora%20y%20reacia%20al%20cambio%20debido,%20entre%20otros%20factores,%20al%20alto%20impacto%20y%20costo%20al%20que%20se%20enfrentan%20los%20proyectos%20que%20no%20satisfacen%20las%20expectativas%20planteadas.
https://www.reverso.net/traducci%C3%B3n-texto#sl=spa&tl=eng&text=Sin%20embargo,%20la%20asimilaci%C3%B3n%20tard%C3%ADa%20de%20nuevas%20tecnolog%C3%ADas%20tiene%20implicancias%20profundas.%20Diego%20Comin,%20profesor%20de%20econom%C3%ADa%20en%20Dartmouth%20College,%20ha%20investigado%20la%20asimilaci%C3%B3n%20tecnol%C3%B3gica%20entre%20pa%C3%ADses%20y%20c%C3%B3mo%20es%20que%20la%20asimilaci%C3%B3n%20o%20falta%20de%20asimilaci%C3%B3n%20produce%20disparidad%20(Comin,%202018).%20Esto%20tambi%C3%A9n%20se%20aplica%20para%20aquellos%20que%20demoran%20la%20implementaci%C3%B3n%20de%20nuevas%20tecnolog%C3%ADas%20y%20herramientas.%20Con%20el%20tiempo,%20dichas


Figura 3. Aumento de brechas de asimilación tecnológica en el tiempo 
entre empresas.

 

iFor all of the above, the mining industry is
at the "right time" to adopt the key
technological elements of the Fourth
Industrial Revolution.
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Figure 3. Increase in technological assimilation gaps between 
companies over time.
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Note::
Over time, companies that develop technological efforts (green curve) are
increasing their competitiveness, productivity and technological
assimilation compared to those that are left behind or delay these efforts
(red curve).
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II. STATE-OF-THE-ART MACHINE
LEARNING APPLICATIONS IN MINING

Base de datos
análisis

internacional
sobre CAPEX

88 proyectos 
mineros 

 cobre

71 empresas
mineras

20 países

Tipo de
proyecto

Método de
explotación 

País

Empresa
minera

Etapa de
ingeniería

CAPEX planificado y
real

Plazo planificado
y real

Factor de
escalamiento plazo

Figure 4. State of the art of Machine Learning & Deep Learning 
applications in mining.
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Considering the growing challenges
facing the mining and mineral processing
industry, deep analyses that take
advantage of available information -using
powerful techniques such as Machine
Learning- have increasingly been
developed over the last five years (Figure
4). 

In the following pages, we offer an
excerpt from the systematic review
conducted by GEM on the efforts made
by the industry and the academy in
developing solutions based on
autonomous learning algorithms.

Machine Learning (ML) 
& Deep Learning  (DL)

Open pit 
operation

Prospecting and 
mining exploration

Mine 
planning

Geology and 
geochemistry

Mineral 
processing

Underground 
operation

Selection 
mining method

Open pit 
planning
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mapping 
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 size monitoring 

Mineral 
processing
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Slope
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Tunnel 
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Autonomous cargo

Autonomous
 trucks

Security 
environment 

Risks and 
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Water quality

Air quality

Tailings

Soil quality

To this end, we point out the main
applications, income data and objectives,
as well as the main trends in mine
prospecting and exploration, open-pit
and underground operations, mineral
processing, mine planning, geology and
geochemistry, safety and the
environment.



In the mine prospecting and exploration
category, advances have been made to
predict in a limited area the most
favorable exploration sites (Lin et al.,
2020), the generation of prospecting
maps in large areas (Zhang (2015),
Tabaei (2017)), or the prediction of gold
deposits based on auxiliary variables
such as alteration maps, lithologies, or
other information (Xu et al. (2019),
Maepa et al. (2021)).

Shirmard et al. (2022) also reports
different sources that consider image
processing for geological and
mineralogical mapping.

III. MINE PROSPECTING AND
EXPLORATION
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With the help of these models
exploration costs can be saved by
generating locations with greater mineral
presence favorability.

In this field, image processing has
generated impact by the possibility of
generating maps with high continuity of
objective variables due to the relevant
information provided by each image-
pixel.



Regarding open-pit mining we include
efforts to automate and make drilling,
blasting, loading and transport
operations more efficient through
algorithms.

In drilling, models have been designed to
predict the drilling rate and at the same
time identify process deviations, which
together guarantee an autonomous and
intelligent drilling process. 

In blasting, models can already estimate
the fragmentation size distribution
based on the amount of explosive used
and other factors, as well as estimate the
optimal blasting parameters. 

This aims to reduce costs to a minimum,
so that on the one hand the mineral size
distribution is not too large, as to cost
too much in milling processes or there is
less area for mass transfer in leaching.

12
 

IV. OPEN-PIT MINING

On the other hand, the aim is that the
mineral size distribution is not too small,
so the processing of fine minerals is not
feasible (Monjezi et al. (2012) and
Morgenroth et al. (2019)). 

Furthermore, models have been
developed for autonomous cargo with
object recognition for trucks, excavators
and freighters, so that they can perform
the required tasks with lower rates of
delay and failure. 

In addition, productivity is increased by
optimizing the use of machines, saving
fuel and decreasing the accident rate. 

The use of autonomous trucks is already
a tangible reality in the mining industry
and we expect that such technology will
be increasingly adopted in the coming
years.



Using Machine Learning algorithms, we
can determine the extraction method to
exploit the deposit: open pit, room and
pillar, sublevel stope, block caving,
among others (Bui et al. (2021), Fu et al.
(2018) and Liang et al. (2018). This is an
additional tool in the analyses that are
carried out, in order to confirm or
continue to study how to optimize
resources. Through Deep Learning, the
blocks can also be assigned to a phase
sequence that maximizes the value of
the deposit exploitation (Loor, 2020). 

V. MINERAL PROCESSING 
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Mineral processing includes the
comminution, leaching, flotation and
mine-plant modeling categories.

For comminution it is possible to
separate low-grade ore before
processing (Okada et al.). In addition, it is
possible to estimate the ore grade that is
being processed, which allows improving
processes (Tessier et al., 2020). 

Likewise, with genetic algorithms,
entropy methods and fuzzy theory, we
can determine the mining equipment
that should be used, such as drills,
shovels, trucks, etc. ((Bui et al. (2021),
Samatemba et al. (2020)). 

 

For leaching and flotation the final
mineral recovery can be estimated with
different parameters and image
processing (Flores et al. (2021),
Jahedsaravani et al. (2014) and Horn et
al. (2017).

As for the mine-plant modeling, the idea
is to anticipate the plant mineral
recovery scenarios depending on the
mine scenarios, in addition to estimate
the processing rate and the energy
required in the comminution process
based on mine drilling parameters (Both
et al., 2021).

VI. MINE PLANNING 



In underground mining there are
applications on the domains of
classification of rock massif properties,
slope stability, tunnel performance, rock
burst and stress / strain analysis.

It is possible to predict the properties of
rock massif based on neural network
algorithms if data such as laboratory
tests and site conditions are available
(Morgenroth et al., 2019). 

Algorithms such as neural networks,
support-vector machines or random
forests can make predictions of the
movement of slopes along with
predictions of failure volume
(Morgenroth, 2019). 

With geological data, excavation
methods, seismic data and field mapping,
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it is possible to predict tunnel support
and deformation estimates that can be
generated. 

Regarding rock bursting, it is possible to
predict the magnitude and location of
events, fault magnitude, performance of
supports and probability of occurrence of
events, which is extremely relevant to
evaluate security and contingency
measures. 

For this, models need seismic events
data, geological mapping, rock
classification, among others. 

Finally, through tunnel images and their
processing, it is possible to predict the
stress and deformation, in addition to
estimate the change of these
deformations in time.

VII. UNDERGROUND MINING



In geology and geochemistry multiple
models have been made that receive
geological and geochemical
characteristics such as alteration indices,
lithologies, chemical compositions,
among others, with which it is possible to
make regression or classification models
in order to determine the grade of the
mineral or whether they are high or low
grade. 

In addition, imaging and deep learning
techniques have been employed for the
recognition of geochemical anomalies
related to mineralization, as well as
mineralogical data for predicting sample
recovery in laboratory tests (Jooshaki et
al., 2021).
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Fire gas monitoring and intelligent
underground mine ventilation strategies
have been implemented in hazards and
accidents (Bui et al. (2021). 

VIII. GEOLOGY AND GEOCHEMISTRY

IX. SAFETY AND ENVIRONMENT

In safety and the environment, the
applications associated with the themes
of air quality, water, tailings, soil quality,
risks and accidents stand out. 
Using satellite imagery and other
monitoring data, you can see and detect
dust as well as other sources of
dangerous gases. 

In water management, using
hisperespectral satellite images it is
possible to identify water bodies.

For tailings, it is possible to identify and
monitor tailings dams with their
geographical distribution and surface
erosion monitoring.



CASE STUDY
 

In the range of options offered by
Machine Learning for processing massive
amounts of data and identifying patterns
for decision-making in the mining
industry, It highlights the use of satellite
images and geological information to
support and predict prospecting and
geological exploration.

This type of analysis comes from the
discipline of Remote Sensing or remote
sensing, which is based on obtaining the
characteristics of the elements despite
not being in direct contact with them
(Gupta, 2019).

Just as a telescope can give us
information about planets, stars and
galaxies without being in direct contact
with them, it is possible to use tools such
as sensors and satellite images to better
pinpoint information about rocks,
minerals and/or geographical
characteristics.

Georeferenced satellite images that
capture wavelength bands of the
electromagnetic spectrum are used to
perform the mineral search using
Remote Sensing. It is estimated that
these capture certain mineral indicium
characteristics. 
 
These images are elaborated "to the
measure", in order to amplify certain
reflective characteristics that have the
rocks that contain the mineral that is
sought.

In the same way that a green leaf
acquires its pigmentation by absorbing
most of the colors or wavelengths of light
(even if they are outside their tonality),
seeks to characterize rocks from
reflective signatures or wavelengths that
better specify their properties even
though they are not in the visible
electromagnetic spectrum.

Based on these principles, GEM has
developed and successfully applied
models of iodine classification in 
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Figura 5.  Rangos de absorción de la clorofila, las cuales le otorgan su 
pigmentación característica a las hojas

northern Chile, in order to establish
strategic mining planning decisions
related to determining the favorability of
these domains.

From a geological point of view, caliche
deposits correspond to stratified
deposits of low power that are
associated with rock types such as
carbonates, clays, limonites and/or
gypsum, just to name a few.

At the same time, such deposits are
negatively associated with mafic and
ultramafic rock types (Pérez, 2013).

Through the use of satellite images, the
presence of rock types associated with
caliche can be detected on coarse
territories through the analysis of
electromagnetic bands that characterize
these rock types.
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3

Figure 5: Stratification characteristic of a caliche tank

Ericksen, 1981.
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As Figure 5 shows below, we can observe
that there are certain wavelengths in
which certain types of rocks show a 

Figura 6: Emisividad espectral comparado con los datos de ASTER por tipo de rocas: 
(a) Carbonato; (b) Roca silicia; (c) Roca félsica; (d) Roca intermedia; (e) Máfica y 

(f) Ultramáfica. Arriba se encuentran las longitudes de onda que mide cada banda del
satélite

greater or lesser spectral emissivity,
which allows us to differentiate the
different types of existing rocks.

Ninomiya, 2002.



Since many of the wavelengths are
outside the visible range, specialized
instruments such as the Advanced
Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) or the
Landsat-satellite are needed8, to take
images about the electromagnetic ranges
SWIR (Short Wave Infrared), TIR (Thermal
Infrared) and VNIR (Visible and Near
Infrared).

At the same time, it is widely used in
scientific literature to perform a
mathematical operation or combination
on electromagnetic bands, in order to
amplify certain characteristics present in
certain rocks. As a sample of the above,
Figure 8 shows the Carbonate Index,
widely documented in the literature
(Ninomiya, 2002) (Ninomiya, 2005) (Pour
& Hashim, 2011) (Gupta, 2019), which is 

obtained mathematically as the ratio of
band 13 and band 14 (B13/B14) and
which is used to detect the presence of
high carbonate rocks in satellite images.

Based on the presence of rocks and the
relationship they have with caliche, the in-
depth analysis of the data starts by
selecting the indices of satellite images,
which as explanatory variables, represent
in a better way the spectral characteristics
that the geography to analyze and the
minerals of interest to study.

As a representation of the above, for a
representative land area, the satellite
images of the indices that characterize
rock types on an extension with known
presence of caliche are shown below.
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Figure 7: Satellite images showing different characteristics of the 
same land

Index of alteration of
rocks

Rocks with hydrothermal
alteration

Rock index

Mafic index Salt index Carbonate index

Image display



Rocas con alteración
hidrotermal

Índice de rocas

Índice  de carbonatos

Based on this information, we seek to
identify domains with high
concentrations of salts.

For this, it is considered a system of
classification of two categories: low salt
concentration and high salt
concentration. This classification can be
expanded to more categories.
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Figure 9: Field extension image display, categorized for iodine.
 

Given the strategic rather than estimation
purposes of the analysis, it is chosen to
use categories to improve prediction in
terms of only deciding whether the extent
of land is associated with a known range
of concentrations, rather than predicting
the exact value of such concentrations
(which in turn are more uncertain and
potentially lead to greater error).

Caption
Pixel with high
concentration of iodine 

Pixel with low
concentration of iodine



At this point, there is information that
gives several of the characteristics, but
that mostly would present non-linear
relationships or patterns difficult to
assimilate with respect to the target
variables (concentrations of iodine in the
rock).

Due to non-linear patterns between
satellite images and iodine
concentrations, it is necessary to use AI
models, who are able to identify the
intricate and complex patterns present
between the different images and the
expected concentrations.

Supervised models are used as part of
the analysis, which consider the use of
labeled samples. Using labeled samples
means passing to the model real data of
the phenomenon to be analyzed. So for
example, following the example of rain, it
involves specifying the days when there
was or was not rain. This would be the
sample labeled as target variable. For the
case study of nitrates and iodine, it
means giving the model the land
extensions and their respective
concentrations of iodine and nitrates that
will serve as training and testing data.

Given the strategic rather than
estimation purposes of the analysis, it is
chosen to use categories to improve
prediction in terms of only deciding
whether the extent of land is associated
with a known range of concentrations,
rather than predicting the exact value of
such concentrations (which in turn are
more uncertain and potentially lead to
greater error).

Among the models supervised there are
a large number of models such as SVM 
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Rocas con alteración
hidrotermal

Índice de rocas

Índice  de carbonatos

(Support Vector Machines), RF (Random
Forest), Naive Bayes, Logistic Regression,
Gradient Boosting and XGBoost, just to
name the best known. Several of the
models within this set were tested by
empirical tests, and it was obtained that
the model that presented the best
management of the broad generated
database and the best training and
testing speed was XGBoost.

Compared to the other algorithms, some
of the distinctive advantages of this model
are:

(1) High training speed, which was
observed up to 5 times faster than other
algorithms.

(2) The model can handle large amounts
of data.

(3) The results of this model being an
assembly type model are generally more
robust.

Once the model is chosen and the
database is complete and validated, the
database is divided into two. Part of the
base is intended for model training and
part for testing or validation, which is
used to test the model and understand
how good the predictions are.

The results obtained by GEM showed an
accuracy in classifying validation samples
greater than 65% in iodine. This means
that if the model predicts a specific value
for a pixel in the field, it is observed that
over 65% of the time the salt
concentration will be correct.



CONCLUSIONS

As part of the development of this
exercise the following lessons remain: 

(1) Machine Learning models are useful
and used in various disciplines including
mining.

(2) These models support decision-
making at several different levels.

(3) As the mining prospection example
shows, there are several proven cases -
academics and companies- in which
Machine Learning guarantees its
technical superiority of analysis over
other tools.

(4) Artificial intelligence will be
increasingly used by organizations due to
increased data generation and
computational processing capacity.

However, the advantages of using
artificial intelligence far exceed the points
raised above. Just to mention the
advantages of using satellite images and
geological indexes in mining prospecting
we can find among others:

 (1) The review of large areas of land that
have even reached in some cases 15 Mha
(Granek, 2016).

(2) Supporting geologists in eliminating
subjective judgements for reliable
mapping and drilling campaigns that
avoid wasting resources.

(3) Obtaining geological characteristics for
areas particularly difficult to access,
affected by difficult climatic and terrain
conditions.

 (4) The identification of patterns and
characteristics which are normally outside
the visible spectrum. 

Thus, Machine Learning and AI-based
solutions are expected to be an integral
and growing part of the innovations of the
coming years in the field of mining and
mineral processing. 

Due to the accelerated growth of
research, innovations and solutions
related to the mass processing of data
with greater computing capabilities, the
precise space of application of these
techniques on the challenges of mining of
the future is being created.
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